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LE’ITER TO THE EDITOR 

Fluctuations in the number of percolation clusters * 
A ConiglioTO, H E Stanley? and D StaufferS 
?Center for Polymer Studies and Physics Department, Boston University, Boston, 
MA 02215, USA 
$Physics Department, University of Koln, Koln, West Germany 

Received 21 August 1979 

Abstract. For any lattice in any dimension the mean square fluctuation (N:) - (N, ) ’  in the 
numbers N, of percolation clusters with s sites each is found to equal ( N , )  for large clusters. 

Although much accurate numerical information has been obtained recently on the 
average numbers (N,) of clusters in the random percolation problem (Stoll and Domb 
1978, Leath and Reich 1978, Nakanishi and Stanley 1978, Hoshen et a1 1979), little is 
known so far about fluctuations in these (site) percolation quantities (Levinshtein et a1 
1976, Wu 1978). For example, if a large lattice is simulated many times on a computer, 
then in one realisation we may find ten clusters containing 100 sites each, in the next 
computer run we may find eight such clusters with s = 100 sites, and in the third 
simulation we may find twelve 100-clusters, etc. The average number (N, )  of such 
s-clusters is ten, and the mean square fluctuation of N, is 8 /3  in this example. How, in 
general, are these fluctuations ( N : )  -(N,)’ related to the averages (N,)? In particular, 
do these clusters behave like molecules in an ideal gas (if one cm3 contains lo2’ 
molecules, the average fluctuation in this number is 10” molecules ~ m - ~ ) ,  or do they 
show ‘critical opalescence’ (fluctuations are enhanced by a factor diverging at the 
critical point as the compressibility)? To answer this question, we calculate upper and 
lower bounds for these fluctuations (equation (8c)). For large cluster sizes s, the two 
bounds are found to coincide (equation (9)), and the final result is then tested and 
confirmed by Monte Carlo simulations (figure 1). 

Let an s-cluster be a group of s occupied sites, connected by nearest-neighbour 
distances on a very large periodic lattice with N sites and coordination number z, in a 
random-site percolation problem for arbitrary dimensionality d, 1 d d C co. The 
number of s-clusters in some realisation is N,, whereas P, = (N,)s /N is the probability 
for an arbitrary lattice site to be part of an s-cluster, if each lattice site i, i = 1,2,  . . . , N, 
is occupied randomly with probability p and is empty with probability 1 - p. We denote 
by gamma symbols various characteristic functions which for each realisation are either 
unity or zero. In particular, if the superscript a denotes some s-cluster, then = 1 if 
lattice site i belongs to that cluster a, and 7;; = 1 if the two sites i and j belong to the 
same cluster a. Otherwise these characteristic functions are zero. Consequently, 
y f  X, y f ”  equals unity if site i belongs to any s-cluster, and yj j  = Pa 77; equals unity if 
both i and j belong to the same s-cluster-therwise these sums vanish, since by 
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definition no sites belong to two different clusters (Y and (Y ' in any given configuration. If 
we average these characteristic functions over many realisations of the same lattice on a 
computer, we find the probabilities P, = { y f  ) and Pi, = ( y i j ) ,  where E;. is the probability 
for the sites i and j to belong to the same s-cluster, and is connected with the density 
profile of s-clusters. In a large lattice nearly all sites i are equivalent, and we can rewrite 
these results in the thermodynamic limit as 

(c y i j )  = SNP, = sz(N,). 
11 

If we define 

as a 'density-density' correlation function due to s-clusters (note that yiy; = 1 if i and j 
belong to two different s-clusters), then we have, from equation (la), 

i j  

This is the quantity we are interested in. 
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We now express Aij in a different way, noting that for a given configuration two 
s-clusters a and a’ are either identical or do not overlap at all. In the second case, either 
they have some common perimeter sites (‘touching’) or these perimeters do not overlap 
(‘separated’). (The ‘perimeter’ sites are empty sites which have occupied cluster sites as 
neighbours.) By a k we denote a cluster a‘ which has n perimeter sites in common with 
cluster a; thus a,!, denotes a cluster separated from the cluster a. This distinction 
between identical, touching, and separated pairs a and a’ of clusters gives 

(r;r;) = c (7l“ys”’) = P;j + (yf”yf”b)+ (yf”y:””). ( 2 a )  
nu’ aai) an, 

For separate clusters we have statistical independence, 
(r;a”rf”h) = ( y f ” ) ( y f ” b ) ,  

(?YYf”k) = (1 -p ) -” (y f“ ) (y f” : )  
whereas 

for touching clusters. 
Similarly, 

(Y f ) (Y i”> = c M”>(Yf”’>  =E’ (rXr:”’>+ c (rf”)(rf”9+ c (rf”>(vs”9, (3) 
aa‘ aa‘ aa6 aa, 

where the prime on the first sum indicates summation over those cluster pairs which 
have at least one cluster site in common. (Note that in such a case for a # a’ we have 
7f”y f ” ‘  = 0 for every configuration, but (yf”)(rf”’) # 0 since these different averages 
involve different realisations.) Combining equations (IC), (2) and (3), we find that the 
separated clusters cancel out: 

A:j= P f j - 1 ’  (rf”)(rF’)+ ((y f”y f”A)- (r f”) (y f”’ ) ) .  (4) 
aa‘ aa; 

To find upper and lower bounds for A;j and thus, by equation (Id), for the 
fluctuations in the cluster numbers N,, we need two inequalities: 

and 

Proq 

(2s + l ) - lp ( l -  p y 3  ( y f ” y f ” ” s  P?+1 
an,: 

Every pair (a ,a’)  in the RHS of equation (5) ..as by definition (note the 
prime!) at least one common cluster site k, and for this k we have ( y Y ) ( y f ” ‘ ) =  
(y:E)(yf’). The LHS of equation (5) equals 

nu’ k 

since Pik = X, (y:;). Therefore every term in the RHS of equation (5) is contained in the 
sum on the LHS of equation ( S ) ,  which proves inequality ( 5 ) .  

Equation (6) is more difficult to prove. From every pair (a, a k )  of touching s-clusters 
on the LHS of equation (6), we can construct a single cluster, called a”, with 2s + 1 sites, 
by filling one of the n common perimeter sites of the two clusters Q and Q‘. The cluster 
probabilities are then connected by 
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where the constant a contains the factors arising from the creation of one new cluster 
site (factor p ) ,  the filling of one perimeter site (factor l /( l-p)),  and the possible 
creation of new perimeter sites (factor 1 - p  for each). Since at most z - 2 new 
perimeter sites are created in a lattice with coordination number z ,  we have p(1- p1-l  L 

a ~ p ( 1  - - P ) ’ - ~ ,  or ( y 2 ” ’ . “ ” ) a p ( l  - p ) ‘ - 3 ( y f ” y ~ ~ ) .  Consequently, p(1- 
P)‘-~L; ( y f - ~ : ” ~ ) <  (2s + l )&(y~+’*”  )which proves inequality (6) (the factor 2s + 1 
arises from the fact that at most 2s + 1 different pairs (CY, CY I) give the same CY“). This 
completes our derivation of equations ( 5 )  and (6). 

Combining inequality ( 5 )  with equations ( 2 c )  and (4), we obtain 

A t 3  P f j -C  PikPij, ( 7 a )  
k 

by omitting touching clusters in equation (4). On the other hand, from inequality (6) wLe 
find, by omitting the overlapping clusters in equation (4), 

with b, = (2s  + 1)(1 - ~ ) ~ - ‘ / p  >> 1. Thus equations (74) and (7b)  give the desired upper 
and lower bounds for Aih 

Now we sum equations (7a) and (76)  over the two lattice sites i and j ,  where 
xi, ~ i j  = s 2 ( ~ , )  from equation (1 b )  and X i j k  PikPij N-’(Xik P;k)(Zk, P i m )  = 
(s2(NS))’/N. Thus 

from equations (7). These results give, with equation (Id), the desired upper and lower 
bounds for the fluctuations: 

1 -s’(Ns)/N G ( (N?  > - W S > ’ ) / W s >  1 + bs(2 + l/s)’(N2,+i>/Ws). (8c)  
This inequality is our main exact result. As they should be, the mean square fluctuations 
( N :  ) - (N,)’ are proportional to the size N of the system, as are the averages (N,).  

For large enough s we know (Stoll and Domb 1978, Leath and Reich 1978, Hoshen 
et af 1979) that the cluster numbers (Ns)  decay rapidly (exponentially) with increasing 
cluster size s, except at p = pc .  Thus for s -* 00 at fixed p (and fixed lattice size N) we have 
s2(Ns)-* 0, and for p # p c  we also have bs(NZs+l ) / ( N s )  + 0; therefore the upper and 
lower bounds coincide for large clusters in equation (8c) :  

(9) 
Our Monte Carlo tests of prediction (9) are presented in figure 1, using the Hoshen 

methods employed by Nakanishi and Stanley (1978) to generate and count percolation 
clusters. Our computer studies confirm that the ratios ( (N? ) - (N,)2)/(Ns) are close to 
unity, even at pc where our inequalities are somewhat inconclusive. Thus 

((N5 ) - (NS)’)/(NS) + 1 (s + 00, p f Pc) .  

( N ?  ) - (Ns >’ 5 Ns (10) 

is a good approximation even for rather small clusters, both away from p c  and at pc ,  and 
equation (10) thus gives a simple estimate of Monte Carlo errors in cluster counts. 
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Finally, we return to our initial question: do the clusters behave like molecules in an 
ideal gas, or do they show critical opalescence in the cluster numbers? Our answer is 
both yes and no. Our final result, (lo), looks just like the fluctuations in the number of 
molecules per cm3 for an ideal gas, without an enhancement factor due to interactions. 
But, in contrast to the ideal gas case, our average numbers N, are not fixed but have, for 
large s as a function of p, a very sharp peak very close to the critical concentration pc ,  
whereas they are extremely small away from p c .  In this sense the (Ns), and thus also the 
fluctuations (N?  ) - (Ns)2, show a strong critical opalescence. Thus, although the 
statistical error can be estimated very easily by the usual square root law of ideal 
systems, equation (lo), that same equation also shows the strong critical opalescence in 
the fluctuations characteristic of cooperative phenomena. 

We would like to thank H Nakanishi and P J Reynolds for computer assistance. 
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